Ï㽶ÊÓƵ

Colin Crist

Academic title(s): 

Assistant Professor, Department of Human Genetics

Colin Crist
Contact Information
Email address: 
colin.crist [at] mcgill.ca
Phone: 
514-340-8222 ext. 28541
Department: 
Human Genetics
Area(s): 
Genetics
Current research: 

Dr. Colin Crist studies molecular mechanisms governing skeletal muscle stem cell activity.
His current focus is on the role of microÏ㽶ÊÓƵs and cytoplasmic mRNP granules in maintaining tissue identity in a tissue specific stem cells that respond to cues to regenerate.


Skeletal muscle has a remarkable muscle stem cell dependent capacity for regeneration. Nevertheless, multiple disorders of skeletal muscle, including the family of muscular dystrophies and muscle wasting associated with aging and cancer, represent a major burden on health care systems worldwide. The development of stem cell based regenerative therapies for muscle disease has and will continue to rely heavily on knowledge about embryonic myogenesis and adult regeneration of muscle. We are addressing these challenges using techniques in molecular biology and genetics toinvestigate the molecular mechanisms regulating MuSC activity. We currently focus on translational control of MuSCs and myogenic progenitors. The major research themes of our laboratory are as follows:

1. Translational control of muscle stem cells. Adult stem cells must quickly adapt to environmental cues to activate, proliferate and must make a decision between self-renewal and differentiation. We are investigating translational control mechanisms as first responders regulating gene expression in muscle stem cells.
Ìý
2. microÏ㽶ÊÓƵ regulators of muscle development. During embryonic development, multipotent progenitors make a cell fate decision to enter the myogenic lineage. We are investigating microÏ㽶ÊÓƵ contribution to this cell fate decision. We will manipulate microÏ㽶ÊÓƵ activity to reinforce the muscle cell fate decision to efficiently derive myogenic progenitors from pluripotent stem cells.
Ìý
3. New therapeutic approaches to muscle disease. By investigating molecular mechanisms that regulate muscle stem cell activity, we identify targetable pathways. We are currently characterizing small compounds that target these pathways towards our goal to increase the potential of muscle stem cells to regenerate muscle.

4. Genetic regulators of myogenesis. We are using multiple approaches to identify cofactors that facilitate the activity of transcription factors within the contexts of muscle development and disease.

Selected publications: 

Back to top