Gains made towards treatment of rare bone disease
“XLH is caused in part by renal phosphate wasting, which is the urinary loss from the body of phosphate, an important building block of bones and teeth, along with calcium.” says Prof. McKee. “In pursuing other factors that might contribute to XLH, we used a variety of research methods to show that PHEX enzymatic activity leads to an essentially complete degradation of osteopontin in bones.”
This loss of osteopontin, a known potent inhibitor of mineralization (or calcification) in the skeleton and dentition, normally allows bones and teeth to mineralize and thus harden to meet the biomechanical demands placed on them. In XLH patients lacking functional PHEX enzyme, osteopontin and some of its smaller potent inhibitory peptides are retained and accumulate within the bone. This prevents their hardening and leads to soft deformed bones such as bowed legs (or knock-knees) seen in toddlers.
While not life-threatening, this decreased mineralization of the skeleton (osteomalacia), along with the soft teeth, soon leads to a waddling gait, short stature, bone and muscle pain, weakness and spontaneous tooth abscesses.
The fact that these symptoms are only partially improved by the standard treatment with phosphate – which improves circulating phosphate levels – prompted the researchers to look for local factors within the bone that might be blocking mineralization in these patients.
“With this new identification of osteopontin as a substrate protein for PHEX,” says Professor Barros, “we can begin to develop an enzyme-replacement therapy to treat XLH patients who have nonfunctional PHEX, much as has been done using a different enzyme to treat another rare bone disease called hypophosphatasia.”
This research was jointly funded by the Canadian Institutes of Health Research (Canada) and Fundação de Amparo ȧ Pesquisa do Estado de São Paulo (Brasil).