Killam Seminar Series: Molecular Logic of Synapse Organization and Plasticity
The Killam Seminar Series presentsÌýMolecular Logic of Synapse Organization and Plasticity
The seminar will be taking placed in person at The Neuro (Jeanne Timmins Ampitheatre)
To attend in person, register .
To attend virtually, registerÌý.
³§±è±ð²¹°ì±ð°ù:ÌýTabrez Siddiqui, PhD
University of Manitoba
Abstract:ÌýConnections between nerve cells called synapses are the fundamental units of communication and information processing in the brain. The accurate wiring of neurons through synapses into neural networks or circuits is essential for brain organization. Neuronal networks are sculpted and refined throughout life by constant adjustment of the strength of synaptic communication by neuronal activity, a process known as synaptic plasticity. Deficits in the development or plasticity of synapses underlie various neuropsychiatric disorders, including autism, schizophrenia and intellectual disability. The Siddiqui lab research program comprises three major themes. One, to assess how biochemical switches control the activity of synapse organizing proteins, how these switches act through their binding partners and how these processes are regulated to correct impaired synaptic function in disease. Two, to investigate how synapse organizers regulate the specificity of neuronal circuit development and how defined circuits contribute to cognition and behaviour. Three, to address how synapses are formed in the developing brain and maintained in the mature brain and how microcircuits formed by synapses are refined to fine-tune information processing in the brain. Together, these studies have generated fundamental new knowledge about neuronal circuit development and plasticity and enabled us to identify targets for therapeutic intervention.
µþ¾±´Ç:ÌýDr. Tabrez Siddiqui trained as a biophysicist and biochemist during his graduate studies at the Max Planck Institute for Biophysical Chemistry in Goettingen, Germany. For postdoctoral work at the University of British Columbia, he worked on mechanisms of neuronal synapse development. His postdoctoral work has contributed immensely to understanding how glutamatergic synapses form and function in the brain. In 2014, Dr. Siddiqui joined the University of Manitoba where he is appointed in the department of physiology and pathophysiology. The Siddiqui lab is located at the Klyesen Institute for Advanced Medicine, where he is a principal investigator in the Neuroscience Research Program. The Siddiqui lab focuses on the roles of synaptic adhesion and scaffolding molecules in the development, maintenance and plasticity of synapses and how these processes can be regulated in health and disease. Dr. Siddiqui has nurtured a multifaceted research program encompassing the molecular, systems, and behavioural branches of neuroscience. The Siddiqui lab has developed diverse approaches to address their questions; protein chemistry, glycobiology, cellular assays, molecular genetics, viral methods to manipulate neuronal circuits, slice electrophysiology, and animal behaviour.
Supported by the generosity of the Killam Trusts , The Neuro’s Killam Seminar series hosts outstanding guest speakers.