Note: This is the 2018–2019 eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or .
Program Requirements
The M.Sc. degree requires a minimum of 45 credits, up to a maximum of 51 credits. The program includes from 9 to 27 credits of coursework (depending on the student's background).
Thesis Courses (24 credits)
-
ATOC 691 Master's Thesis Literature Review (3 credits)
Overview
Atmospheric & Oceanic Sciences : Review of relevant literature in preparation for the M.Sc. research.
Terms: Fall 2018, Winter 2019
Instructors: There are no professors associated with this course for the 2018-2019 academic year.
-
ATOC 692 Master's Thesis Research 1 (6 credits)
Overview
Atmospheric & Oceanic Sciences : Independent research under the supervision of the student's M.Sc. supervisor.
Terms: Fall 2018, Winter 2019
Instructors: There are no professors associated with this course for the 2018-2019 academic year.
-
ATOC 694 Master's Thesis Progress Report and Seminar (3 credits)
Overview
Atmospheric & Oceanic Sciences : Written report on the M.Sc. research progress and oral presentation of the report in seminar form to staff and students.
Terms: Fall 2018, Winter 2019
Instructors: There are no professors associated with this course for the 2018-2019 academic year.
-
ATOC 699 Master's Thesis (12 credits)
Overview
Atmospheric & Oceanic Sciences : Independent research under the supervision of the student's M.Sc. supervisor leading to the M.Sc. thesis.
Terms: Fall 2018, Winter 2019
Instructors: There are no professors associated with this course for the 2018-2019 academic year.
Although registration is not required, students registered in M.Sc. programs are expected to regularly attend one of the student seminar series (ATOC 751D1/D2 or ATOC 752D1/D2) and the Department seminar series during the entire period of their enrolment in the program.
Complementary Courses (21 credits)
Must complete or have completed the following courses or equivalent:
-
ATOC 512 Atmospheric and Oceanic Dynamics (3 credits)
Overview
Atmospheric & Oceanic Sciences : Introduction to the fluid dynamics of large-scale flows of the atmosphere and oceans. Stratification of atmosphere and oceans. Equations of state, thermodynamics and momentum. Kinematics, circulation, and vorticity. Hydrostatic and quasi-geostrophic flows. Brief introduction to wave motions, flow over topography, Ekman boundary layers, turbulence.
Terms: Fall 2018
Instructors: Bartello, Peter (Fall)
-
ATOC 513 Waves and Stability (3 credits)
Overview
Atmospheric & Oceanic Sciences : Linear theory of waves in rotating and stratified media. Geostrophic adjustment and model initialization. Wave propagation in slowly varying media. Mountain waves; waves in shear flows. Barotropic, baroclinic, symmetric, and Kelvin-Helmholtz instability. Wave-mean flow interaction. Equatorially trapped waves.
Terms: Winter 2019
Instructors: Straub, David N (Winter)
-
ATOC 515 Turbulence in Atmosphere and Oceans (3 credits)
Overview
Atmospheric & Oceanic Sciences : Application of statistical and semi-empirical methods to the study of geophysical turbulence. Reynolds' equations, dimensional analysis, and similarity. The surface and planetary boundary layers. Oceanic mixed layer. Theories of isotropic two- and three- dimensional turbulence: energy and enstrophy inertial ranges. Beta turbulence.
Terms: This course is not scheduled for the 2018-2019 academic year.
Instructors: There are no professors associated with this course for the 2018-2019 academic year.
-
ATOC 519 Advances in Chemistry of Atmosphere (3 credits) *
Overview
Atmospheric & Oceanic Sciences : Selected areas of atmospheric chemistry from field and laboratory to theoretical modelling are examined. The principles of atmospheric reactions (gas, liquid and heterogeneous phases in aerosols and clouds) and issues related to chemical global change will be explored.
Terms: Winter 2019
Instructors: Ariya, Parisa A (Winter)
Prerequisites: CHEM 243, and CHEM 263 or CHEM 213 and CHEM 273, MATH 222 and MATH 315 (or equivalents) or permission of instructor.
Restriction(s): Not open to students who have taken or are taking ATOC 419, ATOC 619, CHEM 419, CHEM 519 or CHEM 619.
Winter
3 hours lecture
Offered in odd years. Students should register in CHEM 519 in even years.
-
ATOC 521 Cloud Physics (3 credits)
Overview
Atmospheric & Oceanic Sciences : Review of dry and moist atmospheric thermodynamics concepts. Atmospheric aerosols, nucleation of water and ice. Formation and growth of cloud droplets and ice crystals. Initiation of precipitation. Severe storms and hail. Weather modification. Numerical cloud models.
Terms: Winter 2019
Instructors: Zuend, Andreas (Winter)
-
ATOC 525 Atmospheric Radiation (3 credits)
Overview
Atmospheric & Oceanic Sciences : Solar and terrestrial radiation. Interactions of molecules, aerosols, clouds, and precipitation with radiation of various wavelengths. Radiative transfer through the clear and cloudy atmosphere. Radiation budgets. Satellite and ground-based measurements. Climate implications.
Terms: Fall 2018
Instructors: Huang, Yi (Fall)
-
ATOC 530 Paleoclimate Dynamics (3 credits)
Overview
Atmospheric & Oceanic Sciences : Introduction to the components of the climate system. Review of paleoclimates. Physical processes and models of climate and climate change.
Terms: This course is not scheduled for the 2018-2019 academic year.
Instructors: There are no professors associated with this course for the 2018-2019 academic year.
Winter
3 hours lecture
Prerequisite (Undergraduate): MATH 315, or permission of instructor
-
ATOC 531 Dynamics of Current Climates (3 credits)
Overview
Atmospheric & Oceanic Sciences : The general circulation of the atmosphere and oceans. Atmospheric and oceanic general circulation models. Observations and models of the El Niño and Southern Oscillation phenomena.
Terms: Fall 2018
Instructors: Merlis, Timothy (Fall)
-
ATOC 540 Synoptic Meteorology 1 (3 credits)
Overview
Atmospheric & Oceanic Sciences : Analysis of current meteorological data. Description of a geostrophic, hydrostatic atmosphere. Ageostrophic circulations and hydrostatic instabilities. Kinematic and thermodynamic methods of computing vertical motions. Tropical and extratropical condensation rates. Barotropic and equivalent barotropic atmospheres.
Terms: Fall 2018
Instructors: Atallah, Eyad Hashem (Fall)
-
ATOC 541 Synoptic Meteorology 2 (3 credits)
Overview
Atmospheric & Oceanic Sciences : Analysis of current meteorological data. Quasi-geostrophic theory, including the omega equation, as it relates to extratropical cyclone and anticyclone development. Frontogenesis and frontal circulations in the lower and upper troposphere. Cumulus convection and its relationship to tropical and extratropical circulations. Diagnostic case study work.
Terms: Winter 2019
Instructors: Atallah, Eyad Hashem (Winter)
-
ATOC 568 Ocean Physics (3 credits)
Overview
Atmospheric & Oceanic Sciences : Research methods in physical oceanography including data analysis and literature review. Course will be divided into five separate modules focusing on temperature-salinity patterns, ocean circulation, boundary layers, wave phenomena and tides.
Terms: Winter 2019
Instructors: Dufour, Carolina (Winter)
Winter
3 hours lecture
Prerequisite (Undergraduate): ATOC 512 or permission of instructor
Restriction: Graduate students and final-year Honours Atmospheric Science students. Others by special permission.
-
ATOC 626 Atmospheric/Oceanic Remote Sensing (3 credits)
Overview
Atmospheric & Oceanic Sciences : Principles of radiative transfer applied to observing the atmosphere and oceans by satellite, radar, and other methods of remote sensing. Applications to cloud physics and climate research.
Terms: This course is not scheduled for the 2018-2019 academic year.
Instructors: There are no professors associated with this course for the 2018-2019 academic year.
3 hours
-
ATOC 646 Mesoscale Meteorology (3 credits)
Overview
Atmospheric & Oceanic Sciences : Examination of the theory of important mesoscale phenomena, including fronts, cumulus convection and its organization, and tropical and extratropical cyclones. Application of the theory with detailed case studies of these phenomena. Mesoscale processes in numerical simulations.
Terms: This course is not scheduled for the 2018-2019 academic year.
Instructors: There are no professors associated with this course for the 2018-2019 academic year.
3 hours
-
CHEM 519 Advances in Chemistry of Atmosphere (3 credits) *
Overview
Chemistry : Selected areas of atmospheric chemistry from field and laboratory to theoretical modelling are examined. The principles of atmospheric reactions (gas, liquid and heterogeneous phases in aerosols and clouds) and issues related to chemical global change will be explored.
Terms: Winter 2019
Instructors: Ariya, Parisa A (Winter)
Prerequisites: CHEM 243, CHEM 213 and CHEM 273, MATH 222 and MATH 315 (or equivalents) or permission of instructor.
Restriction(s): Not open to students who have taken or are taking CHEM 419, CHEM 619, ATOC 419, ATOC 519 or ATOC 619.
Winter
3 lectures
Offered in even years. Students should register in ATOC 519 in odd years.
* Students may select either ATOC 519 or CHEM 519.
Or other courses at the 500 level or higher recommended by the Department's Graduate Program Director.
Students with a strong background in atmospheric or oceanic science, or a Diploma in Meteorology, will take at least the 7-credit minimum. Students with no previous background in atmospheric or oceanic science must take the 20-credit maximum.