Note: This is the 2014–2015 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.
Program Requirements
Freshman students interested in this Minor concentration should seek advice at the earliest opportunity, by contacting the Program Adviser. In general, students should declare their intention to obtain this Minor concentration during their U1 year and consult the Program Adviser regarding approval of courses to meet the requirements.
Students select one of the following disciplinary areas as their area of specialization for the program:
Atmospheric and Oceanic Sciences
Biochemistry
Biology - Cell and Molecular Stream, Organismal Stream
Chemistry
Earth and Planetary Sciences
Geography
Mathematics and Statistics
Microbiology and Immunology
Pathology
Physics
Physiology
Psychology
This Minor concentration is administered by the Department of Biology. For more information contact the Program Adviser, Ms. Nancy Nelson in the Biology Department, Room W3/25, Stewart Biology Building, 514-398-4109; or the Program Director, Professor Louis Lefebvre, Room W6/10, Stewart Biology Building, 514-398-6457.
Required Course (3 credits)
-
BIOL 210 Perspectives of Science (3 credits)
Overview
Biology (Sci) : This course is an introduction to the thinking, language and practices of scientists. Its objective is to bridge the gap between science and the humanities, and in particular to allow students enrolled in the Minor Concentration in Science for Arts to pursue their interests in specific scientific disciplines.
Terms: Fall 2014
Instructors: Lefebvre, Louis (Fall)
Fall
3 hours lecture
Complementary Courses (15 credits)
15 credits taken in one of the disciplinary areas given below. Where suggested courses have prerequisites at the 200 or 300 level associated with them, credit for the associated prerequisites may also be counted as part of the 15 credits.
Prerequisites at the 100 level cannot be counted toward the Minor concentration.
With the prior written approval of the Program Adviser, an appropriate alternative set of courses may be substituted.
Disciplinary Areas
Atmospheric and Oceanic Sciences
Prerequisites which cannot be counted toward the Minor concentration: MATH 140 and MATH 141 or equivalents; PHYS 101 or PHYS 131 and PHYS 102 or PHYS 142 or equivalents recommended.
-
ATOC 214 Introduction: Physics of the Atmosphere (3 credits)
Overview
Atmospheric & Oceanic Sciences : An introduction to physical meteorology designed for students in the physical sciences. Topics include: composition of the atmosphere; heat transfer; the upper atmosphere; atmospheric optics; formation of clouds and precipitation; instability; adiabatic charts.
Terms: Fall 2014
Instructors: Yau, Man K (Fall)
-
ATOC 215 Oceans, Weather and Climate (3 credits)
Overview
Atmospheric & Oceanic Sciences : Laws of motion, geostrophic wind, gradient wind. General circulation of the atmosphere and oceans, local circulation features. Air-sea interaction, including hurricanes and sea-ice formation, extra-tropical weather systems and fronts, role of the atmosphere and oceans in climate.
Terms: Winter 2015
Instructors: Yau, Man K (Winter)
Winter
3 hours lecture
Prerequisite: ATOC 214
-
ATOC 309 Weather Radars and Satellites (3 credits)
Overview
Atmospheric & Oceanic Sciences : Basic notions of radiative transfer and applications of satellite and radar data to mesoscale and synoptic-scale systems are discussed. Emphasis will be put on the contribution of remote sensing to atmospheric and oceanic sciences.
Terms: Winter 2015
Instructors: Fabry, Frederic; Huang, Yi (Winter)
Winter
3 hours lecture
Prerequisite: ATOC 215
-
ATOC 315 Thermodynamics and Convection (3 credits)
Overview
Atmospheric & Oceanic Sciences : Buoyancy, stability, and vertical oscillations. Dry and moist adiabatic processes. Resulting dry and precipitating convective circulations from the small scale to the global scale. Mesoscale precipitation systems from the cell to convective complexes. Severe convection, downbursts, mesocyclones.
Terms: Fall 2014
Instructors: Ioannidou, Evangelia (Fall)
-
MATH 222 Calculus 3 (3 credits)
Overview
Mathematics & Statistics (Sci) : Taylor series, Taylor's theorem in one and several variables. Review of vector geometry. Partial differentiation, directional derivative. Extreme of functions of 2 or 3 variables. Parametric curves and arc length. Polar and spherical coordinates. Multiple integrals.
Terms: Fall 2014, Winter 2015, Summer 2015
Instructors: Brandenbursky, Michael; Xu, Jian-Jun (Fall) Tsogtgerel, Gantumur (Winter) Eswarathasan, Suresh (Summer)
Biochemistry
Prerequisites which cannot be counted toward the Minor concentration: BIOL 111 and BIOL 112, CHEM 110 and CHEM 120, or their equivalents.
-
ANAT 262 Introductory Molecular and Cell Biology (3 credits)
Overview
Anatomy & Cell Biology : The architectural, functional and temporal continuity of organelles and the cytoskeleton of mammalian cells is introduced as well as their functional integration in the phenomena of exocytosis, endocytosis, protein trafficking and cell motility and adhesion.
Terms: Winter 2015
Instructors: Presley, John; Stochaj, Ursula; Mandato, Craig A. (Winter)
-
BIOC 212 Molecular Mechanisms of Cell Function (3 credits)
Overview
Biochemistry : An introductory course describing the biochemistry and molecular biology of selected key functions of animal cells, including: gene expression; mitochondrial production of metabolic energy; cellular communication with the extra-cellular environment; and regulation of cell division.
Terms: Winter 2015
Instructors: Pause, Arnim; Bouchard, Maxime; Young, Jason (Winter)
-
BIOL 200 Molecular Biology (3 credits)
Overview
Biology (Sci) : The physical and chemical properties of the cell and its components in relation to their structure and function. Topics include: protein structure, enzymes and enzyme kinetics; nucleic acid replication, transcription and translation; the genetic code, mutation, recombination, and regulation of gene expression.
Terms: Fall 2014
Instructors: Bureau, Thomas E; Roy, Richard D W; Fagotto, Francesco; Zetka, Monique (Fall)
-
CHEM 212 Introductory Organic Chemistry 1 (4 credits)
Overview
Chemistry : A survey of reactions of aliphatic and aromatic compounds including modern concepts of bonding, mechanisms, conformational analysis, and stereochemistry.
Terms: Fall 2014, Winter 2015, Summer 2015
Instructors: Daoust, Michel; Huot, Mitchell; Pavelka, Laura; Tsantrizos, Youla S (Fall) Daoust, Michel; Huot, Mitchell; Pavelka, Laura; Lumb, Jean-Philip; Gauthier, Jean-Marc (Winter) Pavelka, Laura; Daoust, Michel (Summer)
Fall, Winter, Summer
Prerequisite: CHEM 110 or equivalent.
Corequisite: CHEM 120 or equivalent.
Restriction: Not open to students who are taking or have taken CHEM 211 or equivalent
Each lab section is limited enrolment
Note: Some CEGEP programs provide equivalency for this course. For more information, please see the Department of Chemistry's Web page ().
Students who have completed CHEM 212 and CHEM 222 or their equivalents may take one or both of the following:
-
BIOC 311 Metabolic Biochemistry (3 credits)
Overview
Biochemistry : The generation of metabolic energy in higher organisms with an emphasis on its regulation at the molecular, cellular and organ level. Chemical concepts and mechanisms of enzymatic catalysis are also emphasized. Included: selected topics in carbohydrate, lipid and nitrogen metabolism; complex lipids and biological membranes; hormonal signal transduction.
Terms: Fall 2014
Instructors: St-Pierre, Julie; Schmeing, Thomas Martin; Tremblay, Michel (Fall)
-
BIOC 312 Biochemistry of Macromolecules (3 credits)
Overview
Biochemistry : Gene expression from the start of transcription to the synthesis of proteins, their modifications and degradation. Topics covered: purine and pyrimidine metabolism; transcription and its regulation; mÏ㽶ÊÓƵ processing; translation; targeting of proteins to specific cellular sites; protein glycosylation; protein phosphorylation; protein turn-over; programmed cell death (apoptosis).
Terms: Winter 2015
Instructors: Nepveu, Alain; Pelletier, Gerard; Turcotte, Bernard (Winter)
Biology
Students interested in Biology can choose between two streams. One is oriented toward cell and molecular biology and leads to upper-level courses in developmental biology, human genetics, molecular biology, or allied fields. The other is oriented more toward organismal biology and leads to upper-level courses in biodiversity, ecology, neurobiology, behaviour, or conservation biology. See Ms. Nancy Nelson in the Biology Department, Room W3/25, Stewart Biology Building, to arrange a counselling session on the choice of courses above the 200 level.
Prerequisites which cannot be counted toward the Minor concentration: BIOL 111 and BIOL 112, plus CHEM 110 and CHEM 120 or their equivalents; in addition, for the Organismal Stream, PHYS 101 or PHYS 131; and MATH 140 and PHYS 102 or PHYS 142 if taking BIOL 306.
Biology - Cell and Molecular Stream
Note: CHEM 212 or its equivalent is a corequisite for BIOL 200.
-
BIOL 200 Molecular Biology (3 credits)
Overview
Biology (Sci) : The physical and chemical properties of the cell and its components in relation to their structure and function. Topics include: protein structure, enzymes and enzyme kinetics; nucleic acid replication, transcription and translation; the genetic code, mutation, recombination, and regulation of gene expression.
Terms: Fall 2014
Instructors: Bureau, Thomas E; Roy, Richard D W; Fagotto, Francesco; Zetka, Monique (Fall)
-
BIOL 201 Cell Biology and Metabolism (3 credits)
Overview
Biology (Sci) : This course introduces the student to our modern understanding of cells and how they work. Major topics to be covered include: photosynthesis, energy metabolism and metabolic integration; plasma membrane including secretion, endocytosis and contact mediated interactions between cells; cytoskeleton including cell and organelle movement; the nervous system; hormone signaling; the cell cycle.
Terms: Winter 2015
Instructors: Brouhard, Gary; Brown, Gregory G; Zetka, Monique (Winter)
-
BIOL 202 Basic Genetics (3 credits)
Overview
Biology (Sci) : Introduction to basic principles, and to modern advances, problems and applications in the genetics of higher and lower organisms with examples representative of the biological sciences.
Terms: Winter 2015, Summer 2015
Instructors: Schoen, Daniel J; Moon, Nam Sung; Hendricks, Shelton (Winter) Dankort, David; Hipfner, David (Summer)
-
CHEM 212 Introductory Organic Chemistry 1 (4 credits)
Overview
Chemistry : A survey of reactions of aliphatic and aromatic compounds including modern concepts of bonding, mechanisms, conformational analysis, and stereochemistry.
Terms: Fall 2014, Winter 2015, Summer 2015
Instructors: Daoust, Michel; Huot, Mitchell; Pavelka, Laura; Tsantrizos, Youla S (Fall) Daoust, Michel; Huot, Mitchell; Pavelka, Laura; Lumb, Jean-Philip; Gauthier, Jean-Marc (Winter) Pavelka, Laura; Daoust, Michel (Summer)
Fall, Winter, Summer
Prerequisite: CHEM 110 or equivalent.
Corequisite: CHEM 120 or equivalent.
Restriction: Not open to students who are taking or have taken CHEM 211 or equivalent
Each lab section is limited enrolment
Note: Some CEGEP programs provide equivalency for this course. For more information, please see the Department of Chemistry's Web page ().
Plus a selected subset of these or related upper-level courses:
-
BIOL 300 Molecular Biology of the Gene (3 credits)
Overview
Biology (Sci) : A survey of current knowledge and approaches in the area of regulation of gene expression, post-transcriptional control of gene expression, and signal transduction.
Terms: Fall 2014
Instructors: Schöck, Frieder; Moon, Nam Sung (Fall)
-
BIOL 303 Developmental Biology (3 credits)
Overview
Biology (Sci) : A consideration of the fundamental processes and principles operating during embryogenesis. Experimental analyses at the molecular, cellular, and organismal levels will be presented and discussed to provide an overall appreciation of developmental phenomena.
Terms: Winter 2015
Instructors: Kaitna, Susanne; Rao, Yong; Dufort, Daniel (Winter)
-
BIOL 313 Eukaryotic Cell Biology (3 credits)
Overview
Biology (Sci) : Cell biology of eukaryotes focusing on the assembly and function of cellular structures, the regulation of transcription; the dynamics of the cytoskeleton and its motors; mechanics of cell division; cell cycle and checkpoints; nuclear dynamics; chromosome structure and behaviour and experimental techniques.
Terms: Winter 2015
Instructors: Zetka, Monique; Fagotto, Francesco; Kaitna, Susanne (Winter)
-
BIOL 314 Molecular Biology of Oncogenes (3 credits)
Overview
Biology (Sci) : The genes that cause cancer are altered versions of genes present in normal cells. The origins of these oncogenes, their genetic structure, regulation, and the biochemical properties of the oncogene-encoded proteins will be analyzed in an attempt to understand the origins of human and animal cancers.
Terms: Fall 2014
Instructors: Majewska, Loydie; Tonin, Patricia N; Ursini-Siegel, Giuseppina (Fall)
-
BIOL 370 Human Genetics Applied (3 credits)
Overview
Biology (Sci) : A contemporary view of genetic research as applied to human health and well-being.
Terms: Fall 2014
Instructors: Palmour, Roberta M; Pastinen, Tomi Markku; Mitchell, John James (Fall)
Biology - Organismal Stream
CHEM 212 or its equivalent is corequisite for BIOL 200.
-
BIOL 200 Molecular Biology (3 credits)
Overview
Biology (Sci) : The physical and chemical properties of the cell and its components in relation to their structure and function. Topics include: protein structure, enzymes and enzyme kinetics; nucleic acid replication, transcription and translation; the genetic code, mutation, recombination, and regulation of gene expression.
Terms: Fall 2014
Instructors: Bureau, Thomas E; Roy, Richard D W; Fagotto, Francesco; Zetka, Monique (Fall)
-
BIOL 201 Cell Biology and Metabolism (3 credits)
Overview
Biology (Sci) : This course introduces the student to our modern understanding of cells and how they work. Major topics to be covered include: photosynthesis, energy metabolism and metabolic integration; plasma membrane including secretion, endocytosis and contact mediated interactions between cells; cytoskeleton including cell and organelle movement; the nervous system; hormone signaling; the cell cycle.
Terms: Winter 2015
Instructors: Brouhard, Gary; Brown, Gregory G; Zetka, Monique (Winter)
-
BIOL 205 Biology of Organisms (3 credits)
Overview
Biology (Sci) : Unified view of form and function in animals and plants. Focus on how the laws of chemistry and physics illuminate biological processes relating to the acquisition of energy and materials and their use in movement, growth, development, reproduction and responses to environmental stress.
Terms: Winter 2015
Instructors: Dhindsa, Rajinder S; Krahe, Rudiger; Sakata, Jon (Winter)
-
BIOL 215 Introduction to Ecology and Evolution (3 credits)
Overview
Biology (Sci) : An introduction to the fundamental processes of ecology and evolution that bear on the nature and diversity of organisms and the processes that govern their assembly into ecological communities and their roles in ecosystem function.
Terms: Fall 2014
Instructors: Price, Neil; De Martino, Gemma (Fall)
-
CHEM 212 Introductory Organic Chemistry 1 (4 credits)
Overview
Chemistry : A survey of reactions of aliphatic and aromatic compounds including modern concepts of bonding, mechanisms, conformational analysis, and stereochemistry.
Terms: Fall 2014, Winter 2015, Summer 2015
Instructors: Daoust, Michel; Huot, Mitchell; Pavelka, Laura; Tsantrizos, Youla S (Fall) Daoust, Michel; Huot, Mitchell; Pavelka, Laura; Lumb, Jean-Philip; Gauthier, Jean-Marc (Winter) Pavelka, Laura; Daoust, Michel (Summer)
Fall, Winter, Summer
Prerequisite: CHEM 110 or equivalent.
Corequisite: CHEM 120 or equivalent.
Restriction: Not open to students who are taking or have taken CHEM 211 or equivalent
Each lab section is limited enrolment
Note: Some CEGEP programs provide equivalency for this course. For more information, please see the Department of Chemistry's Web page ().
Plus one or more of these or related upper-level courses:
-
BIOL 304 Evolution (3 credits)
Overview
Biology (Sci) : This course will show how the theory of evolution by natural selection provides the basis for understanding the whole of biology. The first half of the course describes the process of selection, while the second deals with evolution in the long term.
Terms: Fall 2014
Instructors: Rolshausen, Gregor (Fall)
-
BIOL 305 Animal Diversity (3 credits)
Overview
Biology (Sci) : The characteristics of the major groups of animals, their ancestry, history and relationship to one another. The processes of speciation, adaptive radiation and extinction responsible for diversity. Methods for constructing of phylogenies, for comparing phenotypes, and for estimating and analyzing diversity.
Terms: Winter 2015
Instructors: Millien, Virginie; Larsson, Hans Carl; Bell, Graham (Winter)
-
BIOL 306 Neural Basis of Behaviour (3 credits)
Overview
Biology (Sci) : Neural mechanisms of animal behaviour; neuroethology; cellular neurophysiology, integrative networks within nervous systems; neural control of movement; processing of sensory information.
Terms: Fall 2014
Instructors: Watt, Alanna; Dent, Joseph Alan; Sakata, Jon (Fall)
-
BIOL 307 Behavioural Ecology (3 credits)
Overview
Biology (Sci) : The relationship between animal behaviour and the natural environment in which it occurs. This course introduces the subject of ecology at the level of the individual organism. Emphasis on general principles which relate to feeding, predator avoidance, aggression, reproduction and parental care of animals including humans.
Terms: Winter 2015
Instructors: Reader, Simon (Winter)
-
BIOL 308 Ecological Dynamics (3 credits)
Overview
Biology (Sci) : Principles of population, community, and ecosystem dynamics: population growth and regulation, species interactions, dynamics of competitive interactions and of predator/prey systems; evolutionary dynamics.
Terms: Fall 2014
Instructors: Fussmann, Gregor; Guichard, Frederic (Fall)
-
BIOL 310 Biodiversity and Ecosystems (3 credits)
Overview
Biology (Sci) : Ecological bases of the natural causes and consequences of current global environmental changes, including how biodiversity and ecosystem processes are defined and measured, how they vary in space and time, how they are affected by physical and biological factors, and how they affect each other and human societies.
Terms: Winter 2015
Instructors: Davies, Thomas (Winter)
-
BIOL 465 Conservation Biology (3 credits)
Overview
Biology (Sci) : Discussion of relevant theoretical and applied issues in conservation biology. Topics: biodiversity, population viability analysis, community dynamics, biology of rarity, extinction, habitat fragmentation, social issues.
Terms: Fall 2014
Instructors: Gonzalez, Andrew; Gray, Heather; Green, David M (Fall)
Chemistry
Prerequisites which cannot be counted toward the Minor concentration: BIOL 112, and CHEM 110 and CHEM 120, or their equivalents; MATH 140, and PHYS 101 or PHYS 131, and PHYS 102 or PHYS 142, or their equivalents if taking CHEM 334.
The Department also strongly encourages students to take one or more courses involving a laboratory because the science of chemistry is rooted in laboratory experience.
Students select 15 credits from the following courses and their associated prerequisites:
Note: CHEM 212 or its equivalent is prerequisite to all 200-level or higher courses.
-
CHEM 212 Introductory Organic Chemistry 1 (4 credits)
Overview
Chemistry : A survey of reactions of aliphatic and aromatic compounds including modern concepts of bonding, mechanisms, conformational analysis, and stereochemistry.
Terms: Fall 2014, Winter 2015, Summer 2015
Instructors: Daoust, Michel; Huot, Mitchell; Pavelka, Laura; Tsantrizos, Youla S (Fall) Daoust, Michel; Huot, Mitchell; Pavelka, Laura; Lumb, Jean-Philip; Gauthier, Jean-Marc (Winter) Pavelka, Laura; Daoust, Michel (Summer)
Fall, Winter, Summer
Prerequisite: CHEM 110 or equivalent.
Corequisite: CHEM 120 or equivalent.
Restriction: Not open to students who are taking or have taken CHEM 211 or equivalent
Each lab section is limited enrolment
Note: Some CEGEP programs provide equivalency for this course. For more information, please see the Department of Chemistry's Web page ().
-
CHEM 222 Introductory Organic Chemistry 2 (4 credits)
Overview
Chemistry : Modern spectroscopic techniques for structure determination. The chemistry of alcohols, ethers, carbonyl compounds, and amines, with special attention to mechanistic aspects. Special topics.
Terms: Fall 2014, Winter 2015, Summer 2015
Instructors: Daoust, Michel; Huot, Mitchell; Pavelka, Laura; Perepichka, Dmytro; Harpp, David Noble (Fall) Daoust, Michel; Huot, Mitchell; Pavelka, Laura; Auclair, Karine (Winter) Pavelka, Laura; Daoust, Michel (Summer)
-
CHEM 281 Inorganic Chemistry 1 (3 credits)
Overview
Chemistry : Basic concepts of electronic structure and molecular bonding will be developed and applied to the understanding of common materials. Acid-base chemistry. Survey of the chemistry of the main group elements. Introduction to coordination and organometallic chemistry.
Terms: Winter 2015
Instructors: Moores-François, Audrey (Winter)
-
CHEM 302 Introductory Organic Chemistry 3 (3 credits)
Overview
Chemistry : Topics covered may include the following: Aromatic compounds, heterocyclic chemistry, sulfur and phosphorus chemistry, organosulfur and organophosphorus compounds, and biomolecules such as lipids, carbohydrates, amino acids, polypeptides, DNA and Ï㽶ÊÓƵ.
Terms: Fall 2014, Winter 2015
Instructors: Gleason, James L; Damha, Masad J (Fall) Damha, Masad J; Gleason, James L (Winter)
-
CHEM 334 Advanced Materials (3 credits)
Overview
Chemistry : The physicochemical properties of advanced materials. Topics discussed include photonics, information storage, 'smart' materials, biomaterials, clean energy materials, porous materials, and polymers.
Terms: Fall 2014
Instructors: Friscic, Tomislav (Fall)
Fall
Prerequisites: CHEM 110/CHEM 120 and PHYS 101/PHYS 102 or PHYS 131/PHYS 142, or CEGEP Physics and Chemistry, or equivalent. Prerequisite or Corerequisite: one of CHEM 203, CHEM 204, CHEM 223 and CHEM 243, CHEM 214 or equivalent; or one of PHYS 230 and PHYS 232, or equivalent; or permission of instructor.
Restriction: Not open to students who have taken or are taking PHYS 334.
-
CHEM 381 Inorganic Chemistry 2 (3 credits)
Overview
Chemistry : Introduction to transition metal chemistry, coordination numbers and geometry, and nomenclature will be followed by a discussion of crystal field theory and its applications to problems in spectroscopy, magnetochemistry, thermodynamics and kinetics. Several aspects related to applications of organometallic compounds in catalysis and bioinorganic systems will be discussed.
Terms: Fall 2014
Instructors: Bohle, David (Fall)
Fall
Prerequisite: CHEM 281.
Restriction: For Honours and Major Chemistry students
One of:
-
CHEM 203 Survey of Physical Chemistry (3 credits)
Overview
Chemistry : The fundamentals of thermodynamics and chemical kinetics with applications to biomolecular systems. Thermodynamic and kinetic control of biological processes.
Terms: Fall 2014
Instructors: Sanctuary, Bryan Clifford (Fall)
-
CHEM 204 Physical Chemistry/Biological Sciences 1 (3 credits)
Overview
Chemistry : Similar to CHEM 223/CHEM 243. Emphasis on the use of biological examples to illustrate the principles of physical chemistry. The relevance of physical chemistry to biology is stressed.
Terms: Fall 2014, Winter 2015
Instructors: Barrett, Christopher (Fall) Blum, Amy (Winter)
Both:
-
CHEM 287 Introductory Analytical Chemistry (2 credits)
Overview
Chemistry : Qualitative and quantitative analysis. A survey of methods of analysis including theory and practice of semimicro qualitative analysis and representative gravimetric, volumetric and instrumental methods.
Terms: Fall 2014
Instructors: Sewall, Samuel Lewis; Power, Joan F (Fall)
Fall
Prerequisites: CHEM 110 and CHEM 120, or CHEM 115, or equivalent.
Corequisite: Students in CHEM 287 are required to take the laboratory, CHEM 297, either simultaneously with CHEM 287 or in the term following CHEM 287.
Restrictions: Not open to students who have taken CHEM 257D1/D2 or CHEM 277D1/D2.
-
CHEM 297 Introductory Analytical Chemistry Laboratory (1 credit)
Overview
Chemistry : Introductory experiments in analytical chemistry emphasizing classical and instrumental methods of quantitative analysis.
Terms: Fall 2014, Winter 2015
Instructors: Hamier, Jan; Sewall, Samuel Lewis; Mauzeroll, Janine (Fall) Hamier, Jan; Sewall, Samuel Lewis (Winter)
Fall, Winter
Prerequisites: CHEM 110 and CHEM 120, or CHEM 115, or equivalent.
Pre- or Co-requisite: CHEM 287.
Restriction: Not open to students who have taken CHEM 257D1/D2 or CHEM 277D1/D2.
Computer Science
Please see calendar listing for Bachelor of Arts Minor Concentrations in Computer Science.
Earth and Planetary Sciences
A combination of EPSC 201 or EPSC 233, together with EPSC 210 and EPSC 212 provides a grounding in Earth and Planetary Sciences and preparation for more specialized courses.
Students should meet with an EPSC departmental adviser prior to selecting their courses, as some 200-level courses have specific prerequisites.
Prerequisites which cannot be counted toward the Minor concentration: CHEM 110 and CHEM 120, and MATH 140 or equivalents.
Students select 15 credits from the following courses and their associated prerequisites:
-
EPSC 201 Understanding Planet Earth (3 credits) *
Overview
Earth & Planetary Sciences : Learn about Earth's origin, its place in the solar system, its internal structure, rocks and minerals, the formation of metal and fossil fuel deposits, and the extinction of dinosaurs. Discover the impact of the volcanic eruptions, earthquakes and mountain chains on Earth's past, present and future. Explore 125 million-year-old Mount Royal.
Terms: Fall 2014, Winter 2015
Instructors: Williams-Jones, Anthony E (Fall) Mucci, Alfonso (Winter)
Fall or Winter
3 hours lectures; afternoon field trips
Restriction: Not open to students who have taken or are taking EPSC 233.
-
EPSC 203 Structural Geology (3 credits)
Overview
Earth & Planetary Sciences : Primary igneous and sedimentary structures, attitudes of planes and lines, stress and strain, fracturing of rocks, faulting, homogeneous strain, description and classification of folds, foliation and lineation, orthographic and stereographic projections.
Terms: Winter 2015
Instructors: Rowe, Christen Danielle (Winter)
Winter
2 hours lectures, 3 hours laboratory
-
EPSC 210 Introductory Mineralogy (3 credits)
Overview
Earth & Planetary Sciences : Crystal chemistry and identification of the principal rock-forming and ore minerals. Elementary crystallography. Optional 2-day field trip.
Terms: Fall 2014
Instructors: Paquette, Jeanne (Fall)
-
EPSC 212 Introductory Petrology (3 credits)
Overview
Earth & Planetary Sciences : A survey of igneous, sedimentary and metamorphic rocks and the processes responsible for their formation. The laboratory will emphasize the recognition of rocks in both hand-specimen and thin section using optical microscopes.
Terms: Winter 2015
Instructors: Berlo, Kim (Winter)
Winter
2 hours lectures, 3 hours laboratory
Prerequisite: EPSC 210
-
EPSC 220 Principles of Geochemistry (3 credits)
Overview
Earth & Planetary Sciences : Basic concepts in geochemistry and the application of geochemical principles of chemistry to geological subdisciplines. Particular emphasis on origin of elements, controls on their distribution in Earth and cosmos, isotopes, organic geochemistry and water chemistry. Application of phase diagrams to geology.
Terms: Fall 2014
Instructors: Baker, Don (Fall)
Fall
2 hours lecture, 3 hours laboratory
-
EPSC 231 Field School 1 (3 credits)
Overview
Earth & Planetary Sciences : Geological mapping of selected areas, preparation of maps, reports from field notes, aerial photographs, etc.
Terms: Winter 2015, Summer 2015
Instructors: Rowe, Christen Danielle (Winter) Rowe, Christen Danielle (Summer)
This course, given in Sutton, has an additional fee of $550 to cover the costs of transportation, meals and accommodation as well as other field expenses. The fee is only refundable prior to the deadline to withdraw with full refund. The department of Earth and Planetary Science subsidizes a portion of the cost for this activity.
-
EPSC 233 Earth and Life History (3 credits) *
Overview
Earth & Planetary Sciences : Interpretation of stratified rocks; history of Earth with special emphasis on the regions of North America; outline of the history of life recorded in fossils.
Terms: Fall 2014
Instructors: Halverson, Galen (Fall)
Fall
3 hours lectures
-
EPSC 320 Elementary Earth Physics (3 credits)
Overview
Earth & Planetary Sciences : Physical properties of Earth and the processes associated with its existence as inferred from astronomy, geodesy, seismology, geology, terrestrial magnetism and thermal evolution.
Terms: Fall 2014
Instructors: Liu, Yajing (Fall)
-
EPSC 334 Invertebrate Paleontology (3 credits)
Overview
Earth & Planetary Sciences : Preservation of fossils; the fossil record of invertebrates; use of fossils in stratigraphy and paleoecology; fossils in evolutionary studies. Fossils of invertebrates are studied in the laboratory.
Terms: Winter 2015
Instructors: Paquette, Jeanne (Winter)
-
EPSC 425 Sediments to Sequences (3 credits)
Overview
Earth & Planetary Sciences : Advanced techniques for interrogating the stratigraphic record. Topics include cyclicity in the sedimentary record, sequence stratigraphy, chemostratigraphy, sedimentary control on the fossil record, and the record of deep sea sediment cores.
Terms: This course is not scheduled for the 2014-2015 academic year.
Instructors: There are no professors associated with this course for the 2014-2015 academic year.
* Note: Students select either EPSC 201 or EPSC 233.
Geography
(Students in any Minor or Major concentration or Honours program in Geography cannot choose this disciplinary area.)
Geography advisers recommend including some preparation in chemistry, statistics, and calculus for study in this area even if formal prerequisites are not in place.
Students select 15 credits from the following courses and their associated prerequisites:
-
GEOG 203 Environmental Systems (3 credits)
Overview
Geography : An introduction to system-level interactions among climate, hydrology, soils and vegetation at the scale of drainage basins, including the study of the global geographical variability in these land-surface systems. The knowledge acquired is used to study the impact on the environment of various human activities such as deforestation and urbanisation.
Terms: Fall 2014
Instructors: Moore, Timothy R; Chmura, Gail L (Fall)
Fall
3 hours
Restriction: Because of quantitative science content of course, not recommended for B.A. and B.Ed. students in their U0 year.
-
GEOG 205 Global Change: Past, Present and Future (3 credits)
Overview
Geography : An examination of global change, from the Quaternary Period to the present day involving changes in the physical geography of specific areas. Issues such as climatic change and land degradation will be discussed, with speculations on future environments.
Terms: Winter 2015
Instructors: Chmura, Gail L (Winter)
Winter
3 hours
-
GEOG 272 Earth's Changing Surface (3 credits)
Overview
Geography : Introduction to the study of landforms as products of geomorphic and geologic systems acting at and near the Earth's surface. The process geomorphology approach will be used to demonstrate how landforms of different geomorphic settings represent a dynamic balance between forces acting in the environment and the physical properties of materials present.
Terms: Fall 2014
Instructors: Pollard, Wayne H (Fall)
Fall
3 hours
-
GEOG 305 Soils and Environment (3 credits)
Overview
Geography : Discussion of the major properties of soils; soil formation, classification and mapping; land capability assessment; the role and response of soils in natural and disturbed environments (e.g. global change, ecosystem disturbance).
Terms: Fall 2014
Instructors: Moore, Timothy R (Fall)
Fall
3 hours and laboratory
Prerequisite: GEOG 203 or introductory course in biology or geology
-
GEOG 321 Climatic Environments (3 credits)
Overview
Geography : The earth-atmosphere system, radiation and energy balances. Surface-atmosphere exchange of energy, mass and momentum and related atmospheric processes on a local and regional scale. Introduction to measurement theory and practice in micrometeorology.
Terms: Winter 2015
Instructors: Strachan, Ian Brett (Winter)
-
GEOG 322 Environmental Hydrology (3 credits)
Overview
Geography : Quantitative, experimental study of the principles governing the movement of water at or near the Earth's surface and how the research relates to the chemistry and biology of ecosystems.
Terms: Winter 2015
Instructors: Roulet, Nigel Thomas; Lehner, Bernhard (Winter)
Winter
3 hours
Prerequisite: GEOG 203 or equivalent
-
GEOG 350 Ecological Biogeography (3 credits)
Overview
Geography : The study of the patterns of distribution of organisms in space and time with emphasis on plant communities. Ecological, geographical, historical and anthropological factors affecting these distribution patterns will be discussed. Particular consideration is given to methods for description and classification of plant communities.
Terms: This course is not scheduled for the 2014-2015 academic year.
Instructors: There are no professors associated with this course for the 2014-2015 academic year.
-
GEOG 372 Running Water Environments (3 credits)
Overview
Geography : The course focuses on the physical habitat conditions found in streams, rivers, estuaries and deltas. Based on the laws governing flow of water and sediment transport, it emphasizes differences among these environments, in terms of channel form, flow patterns, substrate composition and mode of evolution. Flooding, damming, channelisation, forestry impacts.
Terms: Fall 2014
Instructors: Lapointe, Michel F (Fall)
Mathematics and Statistics
(Students in any Minor or Major concentration or Honours program in Mathematics and Statistics cannot choose this disciplinary area.)
Prerequisites which cannot be counted toward the Minor: MATH 133, MATH 140, and MATH 141 or equivalents.
Suggested courses:
-
MATH 203 Principles of Statistics 1 (3 credits)
Overview
Mathematics & Statistics (Sci) : Examples of statistical data and the use of graphical means to summarize the data. Basic distributions arising in the natural and behavioural sciences. The logical meaning of a test of significance and a confidence interval. Tests of significance and confidence intervals in the one and two sample setting (means, variances and proportions).
Terms: Fall 2014, Winter 2015, Summer 2015
Instructors: Best, Ana; Wolfson, David B (Fall) Correa, Jose Andres (Winter) Correa, Jose Andres (Summer)
No calculus prerequisites
Restriction: This course is intended for students in all disciplines. For extensive course restrictions covering statistics courses see Section 3.6.1 of the Arts and of the Science sections of the calendar regarding course overlaps.
You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar. Students should consult for information regarding transfer credits for this course.
-
MATH 204 Principles of Statistics 2 (3 credits)
Overview
Mathematics & Statistics (Sci) : The concept of degrees of freedom and the analysis of variability. Planning of experiments. Experimental designs. Polynomial and multiple regressions. Statistical computer packages (no previous computing experience is needed). General statistical procedures requiring few assumptions about the probability model.
Terms: Winter 2015
Instructors: Wallace, Michael (Winter)
Winter
Prerequisite: MATH 203 or equivalent. No calculus prerequisites
Restriction: This course is intended for students in all disciplines. For extensive course restrictions covering statistics courses see Section 3.6.1 of the Arts and of the Science sections of the calendar regarding course overlaps.
You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar.
-
MATH 222 Calculus 3 (3 credits)
Overview
Mathematics & Statistics (Sci) : Taylor series, Taylor's theorem in one and several variables. Review of vector geometry. Partial differentiation, directional derivative. Extreme of functions of 2 or 3 variables. Parametric curves and arc length. Polar and spherical coordinates. Multiple integrals.
Terms: Fall 2014, Winter 2015, Summer 2015
Instructors: Brandenbursky, Michael; Xu, Jian-Jun (Fall) Tsogtgerel, Gantumur (Winter) Eswarathasan, Suresh (Summer)
-
MATH 223 Linear Algebra (3 credits)
Overview
Mathematics & Statistics (Sci) : Review of matrix algebra, determinants and systems of linear equations. Vector spaces, linear operators and their matrix representations, orthogonality. Eigenvalues and eigenvectors, diagonalization of Hermitian matrices. Applications.
Terms: Fall 2014, Winter 2015
Instructors: Ehlen, Stephan (Fall) Saldanha Salvador, Tiago Miguel (Winter)
-
MATH 338 History and Philosophy of Mathematics (3 credits)
Overview
Mathematics & Statistics (Sci) : Egyptian, Babylonian, Greek, Indian and Arab contributions to mathematics are studied together with some modern developments they give rise to, for example, the problem of trisecting the angle. European mathematics from the Renaissance to the 18th century is discussed in some detail.
Terms: Fall 2014
Instructors: Fox, Thomas F (Fall)
Fall
Microbiology and Immunology
Prerequisites which cannot be counted toward the Minor concentration: BIOL 111 and BIOL 112, CHEM 110 and 120 or their equivalents.
Note: CHEM 212 or its equivalent is prerequisite, or corequisite, to these courses.
Students select 15 credits from the following courses and their associated prerequisites:
-
BIOL 200 Molecular Biology (3 credits)
Overview
Biology (Sci) : The physical and chemical properties of the cell and its components in relation to their structure and function. Topics include: protein structure, enzymes and enzyme kinetics; nucleic acid replication, transcription and translation; the genetic code, mutation, recombination, and regulation of gene expression.
Terms: Fall 2014
Instructors: Bureau, Thomas E; Roy, Richard D W; Fagotto, Francesco; Zetka, Monique (Fall)
-
BIOL 201 Cell Biology and Metabolism (3 credits) *
Overview
Biology (Sci) : This course introduces the student to our modern understanding of cells and how they work. Major topics to be covered include: photosynthesis, energy metabolism and metabolic integration; plasma membrane including secretion, endocytosis and contact mediated interactions between cells; cytoskeleton including cell and organelle movement; the nervous system; hormone signaling; the cell cycle.
Terms: Winter 2015
Instructors: Brouhard, Gary; Brown, Gregory G; Zetka, Monique (Winter)
-
CHEM 212 Introductory Organic Chemistry 1 (4 credits)
Overview
Chemistry : A survey of reactions of aliphatic and aromatic compounds including modern concepts of bonding, mechanisms, conformational analysis, and stereochemistry.
Terms: Fall 2014, Winter 2015, Summer 2015
Instructors: Daoust, Michel; Huot, Mitchell; Pavelka, Laura; Tsantrizos, Youla S (Fall) Daoust, Michel; Huot, Mitchell; Pavelka, Laura; Lumb, Jean-Philip; Gauthier, Jean-Marc (Winter) Pavelka, Laura; Daoust, Michel (Summer)
Fall, Winter, Summer
Prerequisite: CHEM 110 or equivalent.
Corequisite: CHEM 120 or equivalent.
Restriction: Not open to students who are taking or have taken CHEM 211 or equivalent
Each lab section is limited enrolment
Note: Some CEGEP programs provide equivalency for this course. For more information, please see the Department of Chemistry's Web page ().
-
MIMM 211 Introductory Microbiology (3 credits)
Overview
Microbiology and Immun (Sci) : A general treatment of microbiology bearing specifically on the biological properties of microorganisms. Emphasis will be on procaryotic cells. Basic principles of microbial genetics are also introduced.
Terms: Fall 2014
Instructors: Cousineau, Benoit; Sagan, Selena; Nguyen, Dao (Fall)
Fall
3 hours of lecture
Corequisite: BIOL 200
-
MIMM 314 Intermediate Immunology (3 credits)
Overview
Microbiology and Immun (Sci) : An intermediate-level immunology course covering the cellular and molecular basis of lymphocyte development and activation in immune responses in health and disease.
Terms: Winter 2015
Instructors: Piccirillo, Ciriaco; Fournier, Sylvie; Colmegna, Inés (Winter)
Winter
3 hours of lecture
Prerequisite: MIMM 214
-
MIMM 323 Microbial Physiology (3 credits)
Overview
Microbiology and Immun (Sci) : An introduction to the composition and structure of microbial cells, the biochemical activities associated with cellular metabolism and how these activities are regulated and coordinated. The course will have a molecular and genetic approach to the study of microbial physiology.
Terms: Fall 2014
Instructors: Marczynski, Gregory T; Coulton, James W; Turcotte, Bernard (Fall)
Fall
3 hours of lecture
Prerequisite: MIMM 211
-
MIMM 324 Fundamental Virology (3 credits)
Overview
Microbiology and Immun (Sci) : A study of the fundamental properties of viruses and their interactions with host cells. Bacteriophages, DNA- and Ï㽶ÊÓƵ-containing animal viruses, and retroviruses are covered. Emphasis will be on phenomena occurring at the molecular level and on the regulated control of gene expression in virus-infected cells.
Terms: Fall 2014
Instructors: Liang, Chen; Sagan, Selena; Teodoro, Jose Guerreiro (Fall)
* Note: Students select BIOL 201 or ANAT 212 or BIOC 212.
Pathology
Prerequisites which cannot be counted toward the Minor concentration: BIOL 111 and BIOL 112, plus CHEM 110 and CHEM 120, MATH 140, and PHYS 101 or PHYS 131 and PHYS 102 or PHYS 142, or their equivalents.
PATH 300, together with its associate prerequisites, is well suited to students with an interest in medicine.
Students select 15 credits from the following courses and their associated prerequisites:
-
BIOL 200 Molecular Biology (3 credits)
Overview
Biology (Sci) : The physical and chemical properties of the cell and its components in relation to their structure and function. Topics include: protein structure, enzymes and enzyme kinetics; nucleic acid replication, transcription and translation; the genetic code, mutation, recombination, and regulation of gene expression.
Terms: Fall 2014
Instructors: Bureau, Thomas E; Roy, Richard D W; Fagotto, Francesco; Zetka, Monique (Fall)
-
BIOL 201 Cell Biology and Metabolism (3 credits) *
Overview
Biology (Sci) : This course introduces the student to our modern understanding of cells and how they work. Major topics to be covered include: photosynthesis, energy metabolism and metabolic integration; plasma membrane including secretion, endocytosis and contact mediated interactions between cells; cytoskeleton including cell and organelle movement; the nervous system; hormone signaling; the cell cycle.
Terms: Winter 2015
Instructors: Brouhard, Gary; Brown, Gregory G; Zetka, Monique (Winter)
-
CHEM 212 Introductory Organic Chemistry 1 (4 credits)
Overview
Chemistry : A survey of reactions of aliphatic and aromatic compounds including modern concepts of bonding, mechanisms, conformational analysis, and stereochemistry.
Terms: Fall 2014, Winter 2015, Summer 2015
Instructors: Daoust, Michel; Huot, Mitchell; Pavelka, Laura; Tsantrizos, Youla S (Fall) Daoust, Michel; Huot, Mitchell; Pavelka, Laura; Lumb, Jean-Philip; Gauthier, Jean-Marc (Winter) Pavelka, Laura; Daoust, Michel (Summer)
Fall, Winter, Summer
Prerequisite: CHEM 110 or equivalent.
Corequisite: CHEM 120 or equivalent.
Restriction: Not open to students who are taking or have taken CHEM 211 or equivalent
Each lab section is limited enrolment
Note: Some CEGEP programs provide equivalency for this course. For more information, please see the Department of Chemistry's Web page ().
-
PATH 300 Human Disease (3 credits)
Overview
Pathology : Provides a fundamental understanding of the diseases prevalent in North America, for upper level students in the biological sciences. Includes: general responses of cells and organ systems to injury; assessment of individual diseases by relating the causes, symptoms, diagnosis, treatment and prevention to the primary biological abnormalities in each disorder.
Terms: Winter 2015
Instructors: Zorychta, Edith (Winter)
-
PHGY 209 Mammalian Physiology 1 (3 credits)
Overview
Physiology : Physiology of body fluids, blood, body defense mechanisms, muscle, peripheral, central, and autonomic nervous systems.
Terms: Fall 2014
Instructors: Wechsler, Ann; Gold, Phil; Ragsdale, David S (Fall)
Fall
3 hours lectures weekly
Prerequisites: BIOL 112, CHEM 110, CHEM 120, PHYS 101 or PHYS 131, and PHYS 102 or PHYS 142. Pre-/co-requisites: BIOL 200, CHEM 212 or equivalent.
Restriction: Not open to students who have taken PHGY 211 or students who are taking and who have taken NSCI 200.
Restriction: For students in the Faculty of Science, and other students by permission of the instructor
-
PHGY 210 Mammalian Physiology 2 (3 credits)
Overview
Physiology : Physiology of cardiovascular, respiratory, digestive, endocrine and renal systems.
Terms: Winter 2015
Instructors: White, John H; Wechsler, Ann; Takano, Tomoko (Winter)
Winter
3 hours lectures weekly
Prerequisites: BIOL 112, CHEM 110, CHEM 120, PHYS 101 or PHYS 131, and PHYS 102 or PHYS 142. Pre-/co-requisite: BIOL 200, BIOL 201, BIOC 212, CHEM 212 or equivalent.
Restriction: For students in the Faculty of Science, and other students by permission of the instructor
Although PHGY 210 may be taken without the prior passing of PHGY 209, students should note that they may have some initial difficulties because of lack of familiarity with some basic concepts introduced in PHGY 209
* Note: Students select BIOL 201 or ANAT 212 or BIOC 212.
Physics
Prerequisites which cannot be counted toward the Minor concentration: PHYS 131, PHYS 142, MATH 140, MATH 141, MATH 222 or their equivalents.
Honours courses may be substituted for their Major equivalents only with the permission of the Department.
Students select 15 credits from the following courses and their associated prerequisites:
-
PHYS 214 Introductory Astrophysics (3 credits)
Overview
Physics : An introduction to astrophysics with emphasis placed on methods of observation and current models. Stellar radiation and detectors, quasars, black holes. Galaxies, large scale structure of the universe, cosmology.
Terms: Fall 2014
Instructors: Kaspi, Victoria (Fall)
-
PHYS 224 Physics of Music (3 credits)
Overview
Physics : An introduction to the physics of music. Properties of sound and their perception as pitch, loudness, and timbre. Dissonance, consonance, and musical intervals and tuning. Physics of sound propagation and reflection. Resonance. Acoustic properties of pipes, strings, bars, and membranes, and sound production in wind, string, and percussion instruments. The human voice. Room reverberation and acoustics. Directional characteristics of sound sources.
Terms: Fall 2014
Instructors: Gale, Charles (Fall)
Fall
3 hours lectures
Designed for students in the Faculty of Music but suitable for students with an interest in music and its physical basis.
Restriction: Not open to students who have taken PHYS 225
-
PHYS 230 Dynamics of Simple Systems (3 credits)
Overview
Physics : Translational motion under Newton's laws; forces, momentum, work/energy theorem. Special relativity; Lorentz transforms, relativistic mechanics, mass/energy equivalence. Topics in rotational dynamics. Noninertial frames.
Terms: Fall 2014
Instructors: Pereg-Barnea, Tamar (Fall)
-
PHYS 232 Heat and Waves (3 credits)
Overview
Physics : The laws of thermodynamics and their consequences. Thermodynamics of P-V-T systems and simple heat engines. Free, driven, and damped harmonic oscillators. Coupled systems and normal modes. Fourier methods. Wave motion and dispersion. The wave equation.
Terms: Winter 2015
Instructors: Guo, Hong (Winter)
-
PHYS 241 Signal Processing (3 credits)
Overview
Physics : Linear circuit elements, resonance, network theorems, diodes, transistors, amplifiers, feedback, integrated circuits.
Terms: Winter 2015
Instructors: Dobbs, Matthew Adam (Winter)
Winter
2 hours lectures; 3 hours laboratory alternate weeks
Prerequisite: CEGEP physics or PHYS 142.
-
PHYS 242 Electricity and Magnetism (2 credits)
Overview
Physics : Properties of electromagnetic fields, dipole and quadropole fields and their interactions, chemical binding of molecules, electromagnetic properties of materials, Maxwell's equations and properties of electromagnetic waves, propagation of waves in media.
Terms: Fall 2014
Instructors: Wiseman, Paul (Fall)
Fall
2 hours lectures
Prerequisites: CEGEP Physics, MATH 222
-
PHYS 257 Experimental Methods 1 (3 credits)
Overview
Physics : Introductory laboratory work and data analysis as related to mechanics, optics and thermodynamics. Introduction to computers as they are employed for laboratory work, for data analysis and for numerical computation. Previous experience with computers is an asset, but is not required.
Terms: Fall 2014
Instructors: Warburton, Andreas; Engelberg, Edith M (Fall)
-
PHYS 258 Experimental Methods 2 (3 credits)
Overview
Physics : Advanced laboratory work and data analysis as related to mechanics, optics and thermodynamics. Computers will be employed routinely for data analysis and for numerical computation, and, particularly, to facilitate the use of Fourier methods.
Terms: Winter 2015
Instructors: Warburton, Andreas; Engelberg, Edith M (Winter)
Winter
6 hours of laboratory and classroom work
Prerequisite: PHYS 257
Physiology
Prerequisites which cannot be counted towards the Minor concentration: BIOL 111 and BIOL 112, CHEM 110 and CHEM 120, MATH 140, PHYS 101 or PHYS 131, and PHYS 102 or PHYS 142, or their equivalents.
Students should select:
-
BIOL 200 Molecular Biology (3 credits)
Overview
Biology (Sci) : The physical and chemical properties of the cell and its components in relation to their structure and function. Topics include: protein structure, enzymes and enzyme kinetics; nucleic acid replication, transcription and translation; the genetic code, mutation, recombination, and regulation of gene expression.
Terms: Fall 2014
Instructors: Bureau, Thomas E; Roy, Richard D W; Fagotto, Francesco; Zetka, Monique (Fall)
-
BIOL 201 Cell Biology and Metabolism (3 credits) *
Overview
Biology (Sci) : This course introduces the student to our modern understanding of cells and how they work. Major topics to be covered include: photosynthesis, energy metabolism and metabolic integration; plasma membrane including secretion, endocytosis and contact mediated interactions between cells; cytoskeleton including cell and organelle movement; the nervous system; hormone signaling; the cell cycle.
Terms: Winter 2015
Instructors: Brouhard, Gary; Brown, Gregory G; Zetka, Monique (Winter)
-
CHEM 212 Introductory Organic Chemistry 1 (4 credits)
Overview
Chemistry : A survey of reactions of aliphatic and aromatic compounds including modern concepts of bonding, mechanisms, conformational analysis, and stereochemistry.
Terms: Fall 2014, Winter 2015, Summer 2015
Instructors: Daoust, Michel; Huot, Mitchell; Pavelka, Laura; Tsantrizos, Youla S (Fall) Daoust, Michel; Huot, Mitchell; Pavelka, Laura; Lumb, Jean-Philip; Gauthier, Jean-Marc (Winter) Pavelka, Laura; Daoust, Michel (Summer)
Fall, Winter, Summer
Prerequisite: CHEM 110 or equivalent.
Corequisite: CHEM 120 or equivalent.
Restriction: Not open to students who are taking or have taken CHEM 211 or equivalent
Each lab section is limited enrolment
Note: Some CEGEP programs provide equivalency for this course. For more information, please see the Department of Chemistry's Web page ().
* Note: Students select BIOL 201 or BIOC 212.
Both:
-
PHGY 209 Mammalian Physiology 1 (3 credits)
Overview
Physiology : Physiology of body fluids, blood, body defense mechanisms, muscle, peripheral, central, and autonomic nervous systems.
Terms: Fall 2014
Instructors: Wechsler, Ann; Gold, Phil; Ragsdale, David S (Fall)
Fall
3 hours lectures weekly
Prerequisites: BIOL 112, CHEM 110, CHEM 120, PHYS 101 or PHYS 131, and PHYS 102 or PHYS 142. Pre-/co-requisites: BIOL 200, CHEM 212 or equivalent.
Restriction: Not open to students who have taken PHGY 211 or students who are taking and who have taken NSCI 200.
Restriction: For students in the Faculty of Science, and other students by permission of the instructor
-
PHGY 210 Mammalian Physiology 2 (3 credits)
Overview
Physiology : Physiology of cardiovascular, respiratory, digestive, endocrine and renal systems.
Terms: Winter 2015
Instructors: White, John H; Wechsler, Ann; Takano, Tomoko (Winter)
Winter
3 hours lectures weekly
Prerequisites: BIOL 112, CHEM 110, CHEM 120, PHYS 101 or PHYS 131, and PHYS 102 or PHYS 142. Pre-/co-requisite: BIOL 200, BIOL 201, BIOC 212, CHEM 212 or equivalent.
Restriction: For students in the Faculty of Science, and other students by permission of the instructor
Although PHGY 210 may be taken without the prior passing of PHGY 209, students should note that they may have some initial difficulties because of lack of familiarity with some basic concepts introduced in PHGY 209
And, if credits permit, one or more of these intermediate-level Physiology courses:
-
PHGY 311 Channels, Synapses & Hormones (3 credits)
Overview
Physiology : In-depth presentation of experimental results and hypotheses on cellular communication in the nervous system and the endocrine system.
Terms: Fall 2014
Instructors: Cooper, Ellis; Sjostrom, Per Jesper; Sharif Naeini, Reza (Fall)
Fall
3 hours of lectures per week; 1-3 hours optional lab/demonstration/tutorial arranged for a maximum of 3 afternoons per term
Prerequisite: PHGY 209 or permission of the instructor.
-
PHGY 312 Respiratory, Renal, & Cardiovascular Physiology (3 credits)
Overview
Physiology : In-depth presentation of experimental results and hypotheses underlying our current understanding of topics in renal, respiratory and cardiovascular functions explored beyond the introductory level.
Terms: Winter 2015
Instructors: Hanrahan, John W; Mortola, Jacopo; Shrier, Alvin (Winter)
-
PHGY 313 Blood, Gastrointestinal, & Immune Systems Physiology (3 credits)
Overview
Physiology : In-depth presentation of experimental results and hypotheses underlying our current understanding of topics in immunology, blood and fluids, and gastrointestinal physiology.
Terms: Winter 2015
Instructors: Jones, Russell; Blank, Volker Manfred; Kokoeva, Maia (Winter)
-
PHGY 314 Integrative Neuroscience (3 credits)
Overview
Physiology : In depth presentation of experimental results and hypotheses underlying our current understanding of how single neurons and ensembles of neurons encode sensory information, generate movement, and control cognitive functions such as emotion, learning, and memory, during voluntary behaviours.
Terms: Fall 2014
Instructors: Cullen, Kathleen E; Sharif Naeini, Reza; Martinez Trujillo, Julio (Fall)
Fall
3 hours of lectures per week
Prerequisites: PHGY 209
Psychology
(Students in any Minor or Major concentration or Honours program in Psychology cannot choose this disciplinary area.)
Prerequisites which cannot be counted toward the Minor concentration: PSYC 100 (or equivalent).
Students in the Minor concentration take 15 credits of Psychology selected as follows:
-
PSYC 204 Introduction to Psychological Statistics (3 credits)
Overview
Psychology : The statistical analysis of research data; frequency distributions; graphic representation; measures of central tendency and variability; elementary sampling theory and tests of significance.
Terms: Fall 2014, Winter 2015, Summer 2015
Instructors: Amsel, Rhonda N (Fall) Gu, Fei (Winter) Darainy, Mohammad (Summer)
Fall and Winter
Restriction: Not open to students who have passed a CEGEP statistics course(s) with a minimum grade of 75%: Mathematics 201-307 or 201-337 or equivalent or the combination of Quantitative Methods 300 with Mathematics 300
This course is a prerequisite for PSYC 305, PSYC 406, PSYC 310, PSYC 336
You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar.
Plus 6 credits from the following core courses:
-
PSYC 211 Introductory Behavioural Neuroscience (3 credits)
Overview
Psychology : An introduction to contemporary research on the relationship between brain and behaviour. Topics include learning, memory and cognition, brain damage and neuroplasticity, emotion and motivation, and drug addiction and brain reward circuits. Much of the evidence will be drawn from the experimental literature on research with animals.
Terms: Winter 2015
Instructors: Chudasama, Yogita (Winter)
-
PSYC 212 Perception (3 credits)
Overview
Psychology : Perception is the organization of sensory input into a representation of the environment. Topics include: survey of sensory coding mechanisms (visual, auditory, tactile, olfactory, gustatory), object recognition, spatial localization, perceptual constancies and higher level influences.
Terms: Winter 2015
Instructors: Farivar-Mohseni, Reza (Winter)
Fall
2 lectures; 1 conference
-
PSYC 213 Cognition (3 credits)
Overview
Psychology : Where do thoughts come from? What is the nature of thought, and how does it arise in the mind and the brain? Cognition is the study of human information processing, and we will explore topics such as memory, attention, categorization, decision making, intelligence, philosophy of mind, and the mind-as computer metaphor.
Terms: Winter 2015
Instructors: Levitin, Daniel (Winter)
Winter
2 lectures, 1 conference
Prerequisite: One previous course in Psychology.
-
PSYC 215 Social Psychology (3 credits)
Overview
Psychology : The course offers students an overview of the major topics in social psychology. Three levels of analysis are explored beginning with individual processes (e.g., attitudes, attribution), then interpersonal processes (e.g., attraction, communication, love) and finally social influence processes (e.g., conformity, norms, roles, reference groups).
Terms: Fall 2014, Winter 2015
Instructors: Baldwin, Mark W (Fall) Sullivan, Michael John L (Winter)
Plus 6 credits Psychology courses at the 300 level or higher (excluding PSYC 305).