Sam Payne (University of Texas at Austin)
TITRE / TITLE Algebraic geometry studies solution sets of polynomial equations. For instance, over the complex numbers, one may examine the topology of the solution set, whereas over a finite field, one may count its points. For polynomials with integer coefficients, these two fundamental invariants are intimately related via cohomological comparison theorems and trace formulas for the action of Frobenius. I will present recent results regarding point counts over finite fields and the cohomology of moduli spaces of curves that resolve longstanding questions in algebraic geometry and confirm more recent predictions from the Langlands program. LIEU / PLACE |