Event
Ran Tao (Carnegie Mellon University)
Wednesday, October 18, 2023 15:00to16:00
Burnside Hall
Room 920, 805 rue Sherbrooke Ouest, Montreal, QC, H3A 0B9, CA
Title: Quasi-treeable CBERs are treeable via median graphs
Abstract: A countable Borel equivalence relation (CBER) E on a Polish space X is said to be treeable if there is a Borel forest G ⊂ X2 whose trees are precisely the equivalence classes of said relation. E is quasi-treeable if it has a Borel graphing, each of whose components is quasi-isometric to a tree.
In joint work with Ruiyuan (Ronnie) Chen, Antoine Poulin and Anush Tserunyan, we show that quasi-treeable CBERs are treeable by giving a construction of a median graph associated to the quasi-treeing, which will be the main focus of this talk.