Lecture by Johanna Nešlehová, 2019 CRM-SSC Prize Recipient
TITLE: Tales of tails, tiles and ties in dependence modeling/La queue, la tuile, le bris d'égalité et leur rôle dans les modèles de dépendance
ABSTRACT: La modélisation de la dépendance entre variables aléatoires est omniprésente en statistique. S'agissant d'événements rares à fort impact, tels que des orages violents, des inondations ou des vagues de chaleur, la question revêt une grande importance pour la gestion des risques et pose des défis théoriques. Une approche hautement flexible et prometteuse s'appuie sur la théorie des valeurs extrêmes, la modélisation par copules et l'inférence fondée sur les rangs. Je présenterai trois avancées récentes dans ce domaine. Nous nous intéresserons d'abord à la prise en compte de la dépendance en régime moyen, lorsque les modèles asymptotiques de valeurs extrêmes ne conviennent pas. Nous verrons ensuite quoi faire lorsque le nombre de variables est grand et comment une structure de modèle hiérarchique peut être apprise à partir de matrices de corrélation de rangs de grande taille. Enfin, je ne résisterai pas à l'envie de vous initier à l'univers complexe de l'inférence basée sur les rangs pour les données discrètes ou mixtes.