Ï㽶ÊÓƵ

Event

Katya Scheinberg (Cornell University)

Monday, March 13, 2023 16:30to17:30
Burnside Hall Room 1104, 805 rue Sherbrooke Ouest, Montreal, QC, H3A 0B9, CA

Title:

Overview of adaptive stochastic optimization methods

´¡²ú²õ³Ù°ù²¹³¦³Ù:Ìý

Recently a variety of stochastic variants of adaptive methods have been developed and analyzed. These include stochastic step search, trust region and cubicly regularized Newton methods. Such methods adapt the step size parameter and use it to dictate the accuracy required or stochastic approximations. The requirements on stochastic approximations are, thus, also adaptive and in principle can be biased and even inconsistent. The step size parameters in these methods can increase and decrease based on the perceived progress, but unlike the deterministic case they are not bounded away from zero. This creates obstacles in complexity analysis of such methods. We will show how by viewing such algorithms as stochastic processes with martingale behavior we can derive bounds on expected complexity that also apply in high probability. We also show that it is possible to derive a lower bound on step size parameters in high probability for the methods in this general framework. We will discuss various stochastic settings, where the framework easily applies, such as expectation minimization, black box and simulation optimization, expectation minimization with corrupt samples, etc.

Ìý

Follow us on

Back to top