Heejoung Kim (University of Illinois at Urbana-Champaign)
Title: Algorithms detecting stability and Morseness for finitely generated groups.
Abstract:Â For a word-hyperbolic group G, the notion of quasiconvexity is independent of the choice of a generating set and a quasiconvex subgroup of G is quasi-isometrically embedded in G. Kapovich provided a partial algorithm which, on input a finite set S of G, halts if S generates a quasiconvex subgroup of G and runs forever otherwise. However, beyond word-hyperbolic groups, the notion of quasiconvexity is not as useful. For a finitely generated group, there are two recent generalizations of the notion of a quasiconvex subgroup of a word-hyperbolic group, a "stable'' subgroup and a "Morse'' subgroup. In this talk, we will discuss various detection and decidability algorithms for stability and Morseness of a finitely generated subgroup of mapping class groups, right-angled Artin groups, toral relatively hyperbolic groups.