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3. THE CRACK PROBLEM 

We refer to the isotropic elastic region [r@O, co); .ZE( - co, co)] which is bounded internally 
by a penny-shaped flaw of radius “a” and bounded externally by an external circular crack 
of radius “b”. The penny-shaped crack and the external crack are located in the plane 
z = 0. The penny-shaped crack is subjected to the uniform internal pressure po. Since the 
problem exhibits a state of symmetry about the plane z = 0, we can restrict our attention 
to a single halfspace occupying the region z 2 0 and denote by z = O+ the plane of 
symmetry associated with that region. The mixed boundary conditions relevant to the 
crack problem are as follows: 

flzz(r, o+) = -f(r) = -po; Ocr-ca (9) 

fJ&,o+) = 0; r>b 

u,(r,o+) = 0; a,<r<b (11) 

fJ,&, o+) = 0; I 2 0. (12) 

In order to examine the mixed boundary value problem defined by (9)-( 12) it is convenient 
to employ a solution of Love’s strain potential which 7 -1fJ&,o+)5w (boundary ) Tj0  T  Tr 42   T  T TD asr -0.096  Tc 0.096  Tw (mixed ) Tj TD 3  Tr1 TD 3  Tn-0.0704  Tc 0.01 Tw (employ ) Tj0  Tr 35.52 0  TD 3  Tr 0.0576  Tc -.0576  Tw (a ) Tj60T  Tr 42 60T  T3  Hankel -0.16  Tc 0.160w (fJ&,o+) ) Tj0  Tr 38.88 0  TD 3  r 0nsform  Tc 0.1085  Tw0  Tw ,<r<b f J & , o + )  value In f J & , o + )  boundary In o+) is I fJ&,o+) which 
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The system of triple integral equations 
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respectively. From (42), (43) and (44) it follows that 

&= -Y a 

Kb=Y b 

(45) 
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Using eqns (38) and (39) in (45) and (46) we obtain 
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APPENDIX A 

The second integral in (A2) is given by (see e.g. Gradshteyn and Ryzhik [19]) 

Hence 

I= --s 

Substituting the value of f2(t) given by (26) in (A4) we have 

Changing the order of integrations we have 
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