INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, VOL. 3, 285-300 (1979)

SHORT COMMUNICATIONS

AN ENERGY ESTIMATE OF THE FLEXURAL BEHAVIOUR OF A CIRCULAR FOUNDATION EMBEDDED IN AN ISOTROPIC ELASTIC MEDIUM

A. P. S. SELVADURAI Department of Civil Engineering, Carleton University, Ottawa, Canada

INTRODUCTION

The elastic analysis of circular plates embedded in soil and rock media is of importance to the

minimization of the total potential energy functional. The general procedure outlined above is used to analyse the flexural behaviour of the circular foundation, the deflected shape of which is represented by a second-order parabolic curve. This particular deflected shape is assumed to represent, approximately, the flexural behaviour of a moderately rigid foundation (i.e., the relative rigidity of the poil foundation system is different from an infinite value). Using the

energy method, analytical expressions are derived for the deflection and the central flexural

SHORT COMMUNICATIONS

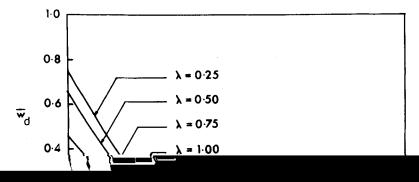
The elastic strain energy of the circular plate subjected to the axisymmetric deflection w(r) is composed of only the flavoral energy of the plate U given by

-			
<u> </u>			
1			
}			
):			
}			
) 			
) 			
) 			
		\	
		Υ	
		·	
		· · · · · · · · · · · · · · · · · · ·	
		·	

	From the principle of stat	ionary total pote	ntial operate we rea	auire		
					1	
_						
				æ		
	<u>'a</u>					

The constants C, and C, can be determined from the equations which are obtained by the

		7.			i.
	2 -			-	
<u>.</u>					
·					
·			 		
A					


SHORT COMMUNICATIONS

It may be noted that while the energy method provides an accurate estimate of the deflections of the foundation w(r), the accuracy with which w(r) is able to predict the flexural moments in the foundation is, in general, considerably less (see e.g., Dym and Shames⁷). Any inaccuracies the transform w(r) as defined by (16) are greatly magnified in


•

 /			
7			
		i i i i i i i i i i i i i i i i i i i	
<u></u>			

