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[1] This paper develops certainexact closed form solutions
to one-dimensional problems involving both advective and
advective-diffusive transport in a porous medium,
particularly in the presence of a Darcy velocity field that
is time-dependent. Such situations can occur when the
boundary potential inducing flow in the porous medium is
time-dependent. A particular form chosen is an
exponentially decaying time-dependency in the flow
velocity, resulting from a non-replenishing source. The
value of the one-dimensional solution stems not only
from its potential applicability for the calibration of
computational schemes used to examine the advection-
diffusion equation in general, but also for the study of the
purely advective flow problem with time-dependent
velocity that requires sophisticated adaptive computational
schemes to ensure numerical stability at a leading front in
the form a discontinuity. INDEXTERMS: 3210 Mathematical
Geophysics: Modeling; 1832 Hydrology: Groundwater transport;
1829 Hydrology: Groundwater hydrology; 1842 Hydrology:
Irrigation; 9805 General or Miscellaneous: Instruments useful in
three or more fields.Citation: Selvadurai, A. P. S. (2004),
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transport equation to include variable velocity fields has
also been discussed in connection with the stochastic
equations for transport in the presence of a random velocity
field. More recently,Shvidler and Karasaki[2003a, 2003b]
and Dagan [2004] have examined the advective transport
problem where the velocity field is stochastic. It is perhaps
worth noting two essential points concerning the formula-
tion of the one-dimensional initial boundary value problem
in which the flow velocity is the time-dependent. If Darcy
flow exists in a porous medium that is rigid and the
permeating fluid is incompressible, then for the flow
velocities to be time-dependent the one-dimensional domain
must be finite and the boundary potential must vary with
time. If either the porous medium is deformable or the pore
fluid is compressible, then there are no restrictions on the
spatial extent of the one-dimensional domain and the flow
velocities can be both time- and space-dependent. In many
of the articles on the one-dimensional problem involving
time-dependent flow velocities, the mechanism contributing
to the time-dependency is not clearly identified. We shall
consider the advective and advective-diffusive transport
problems separately, in order to present the solutions in their
canonical forms. To the author’s knowledge, these solutions
are not available in classical or current literature dealing
with the general transport problem.

3. The Advective Transport Problem

[4] We consider the one-dimensional advective transport
problem for a porous medium governed by the first-order
partial differential equation

� C
� t

� v0 exp � � t� �
� C
� x

� 0� x � �� � �� � � t � 0 � 2�

As is evident from equation (2) we restrict attention to an
advective flow domainx � (�� , � ), with the under-
standing that in the calculation of the advective flow
velocities, the domain is considered to be of finite extent
and the boundary potential has an exponential variation with
time. The parameter� occurring in equation (2) can be
interpreted by appeal to Darcy flow in a one-dimensional
column of lengthl. In this case� = k/l, since the fluid
velocity v(t) is defined in relation to the pore space,k is the
Dupuit-Forchheimer measure of hydraulic conductivity of
the porous medium. This is also related to the conventional
Darcy value applicable to the area averaged hydraulic
conductivity�k, through the relationshipk = �k/n*, wheren* is

the porosity of the porous medium. Also, we denote the
velocityv0 = kH0/l, whereH0 can be identified as the height
of the chemical fluid column at the start of the advective
flow process and the chemical is also assumed to occupy a
part of the column at the start of the advective flow process
(Figure 1). The fixed spatial coordinate isx is chosen in
relation to the position of the chemical concentration front.
Since domain for the advective transport modelling
occupies the rangex � (�� , �(



transport equation [see, e.g.,Selvadurai, 2003, 2004a]
and the convergence of the result (6) to the solution (4) as
� 	 0.

4. The Advective-Diffusive Transport Problem

[6] We consider the problem of one-dimensional advec-
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