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Figure 1. Installation procedures. (a) Shear vane located near the ground surface, (b) Shear van located at a large depth 

the other hand, the torque-twist relationship is accurately recorded throughout the test then it 
seems reasonable to enquire whether the initial portion of such a torque-twist curve is in any 
way representative of the deformability characteristics of the soil medium in its elastic range. 
The possibility of such an extension of the shear vane test was first suggested by Cadling and 
Odenstad5 and more recently by Madhav and Kr i~hna. '~  The main purpose of this paper is to 
develop, within the framework of the classical theory of elasticity, certain theoretical results for 
the torque-twist relationship of a shear vane of prescribed shape embedded in a cohesive soil 
medium. Such a theoretical result would then provide a means of estimating the deformability 
characteristics of a soil medium by using the results derived from a shear vane test. 

To enable the derivation of the theoretical results it becomes necessary to introduce further 
plausible assumptions, in addition to the representation of the cohesive soil as a linearly 
deformable isotropic homogeneous medium. 

(i) 
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tageous to induce a state of deformation, or stress, in the soil medium which will minimize the 
zones of premature failure associated with highly stressed locations. This could be achieved to 
some degreee by representing the vane blades by a regular geometric shape free of sharp edges; 
a vane with a circular blade shape achieves this to a large extent. However, in order to 
approximately represent some shear vanes that are currently used in engineering practice, the 
analytical treatment of a shear vane with blades corresponding to an elliptical shape will be 
considered. It should, however, be noted that the use of shear vanes with rectilinear shapes 
(similar to those shown in Figure 1) results in rather simple expressions relating the undrained 
shear strength and the applied torque. 

(iii) Thirdly, it is assumed that the soil contained within the volume swept by the cross-section 
of the shear vane remains undeformed throughout the initial range of the torque-twist curve. 
According to this assumption, the entire swept volume can be approximately represented by a 
rigid inclusion. In the particular case of a vane blade shape in the form of an ellipse, this swept 
volume will correspond either to a prolate spheroidal or oblate spheroidal rigid region. This 
particular assumption is central to the development of relatively straightforward analytical 
solutions to the torque-twist relationship for the posed shear vane problem. The influence of the 
deformability of the soil region contained within the swept boundary on the accuracy of this 
solution will be further examined in a subsequent section (see also Selvadurai and Osler”). For 
purposes of reference throughout the paper we shall adopt the followirzg nomenclature: (1) a 
‘prolate vane’ is a shear vane with an elliptical blade shape in which the length of the semi-major 
axis (a,) is greater than the equatorial radius (b,); (2) an ‘oblate vane’ is a shear vane with an 
elliptical blade shape in which the length of the semi-minor axis (ao) is less than the equatorial 
radius (bo). Prior to the initiation of yield in the soil medium there exists complete continuity of 
displacements at the interface of this inclusion and the surrounding soil medium; i.e., the 
inclusion is in bonded contact with the rest of the soil medium. 

(iv) Lastly, the dimensions of the vane are assumed to be small in comparison to the 
dimensions of the soil stratum in which the tests are carried out. It should be appreciated that the 
majority of the assumptions invoked above aid the development of fairly straightforward 
solutions for the torque-twist relationships for the shear vane, from which the deformability 
characteristics can be readily estimated. The general approach propounded in this paper can be 
further extended to minimize these simplifying assumptions. 

The elastic analysis of the shear vane problem is thus reduced to the determination of the 
torque-twist relationship for (i) a rigid prolate spheroidal inclusion embedded in bonded 
contract with an infinite isotropic elastic medium or (ii) a rigid prolate spheroidal inclusion which 
is partially embedded in bonded contact with a semi-infinite isotropic elastic medium. These two 
categories are assumed to represent shear vane tests which may be conducted at the surface, or 
at a large depth within the soil respectively. The mathematical formulation of the problem is 
referred to a system of prolate spheroidal coordinates (a, p, 7 ) .  It is found that the shear vane 
problem as formulated above falls into the general category of rotationally symmetric torsion 
problems in which the stress and deformation fields are independent of the longitude ( y ) .  The 
analysis is carried out by making use of the displacement function technique similar to that 
proposed by Selvadurai and Spencer16 and Se1~adurai.l~ The formal similarity between the 
displacement function and the associated Stokes’ stream function used in the analysis of purely 
rotary flow in Newtonian viscous fluids (Jeffery,” Lamb,” Langlois,” Happel and Brenner*l) is 
fully recognized. The restriction of incompressibility, implicit in the treatment of the viscous 
flow problem, is, however, not extended to the analysis of the elasticity problem. Using the 
displacement function technique, an exact closedform solution is developed for the torque-twist 
relationship for a deep shear vane with an elliptical blade shape. Also, the torque-twist 
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Figure 2. The prolate shear vane problem. (a) The spheroidal coordinate system, (b) Shear vane located at a large depth, 
(c) Shear vane located at the ground surface 

respectively. The torque-twist relationship for the prolate spheroidal inclusion can be obtained 
by considering the resultant of moments induced about the axis p = 0 by the shear traction acting 
on the boundary a = ao, i.e., 

With the understanding that the rotation of the inclusion occurs in the direction of the applied 
torque, (14) yields 

3 2 TC; Go 
3{2 coth a. csch ao-ln to} T =  

where to = [(ao). From the geometry of the prolate spheroidal inclusion, the dimensions of the 
semi-major axis (a,) and the equatorial radius (6,) are given by 

(16) a, = c, cosh ao; 6, = c, sinh a. 
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Using the above equations, the torque-twist relationship (15) can be reduced to the form 

where 
b 
UP 

A=- !  and A S l .  

The result (17) is applicable to an elliptical shear vane or a prolate vane located at a large depth 
(Figure 2(6)). 

Circular vane problem 

circular blade shape can be obtained from (17). Taking the appropriate limit, (17) gives 
In the particular case when A + 1, the elastic torque-twist relationship for a shear vane with a 

where up is the radius of the vane. 

Surface vane problem 

Consideration is now given to the problem where the prolate spheroidal inclusion is partially 
embedded in bonded contact with a semi-infinite homogeneous isotropic elastic medium (Figure 
2(c)). In this particular case the boundary conditions of the problem relate to the continuity of 
displacements at the interface a = a. and the traction-free conditions on the plane p = m/2. The 
displacement boundary conditions are 

u,(ao, p )  = wcp sinh a0 sin /3 (194 

and the traction boundary conditions reduce to 

An inspection of the solution developed for the fully embedded inclusion indicates that the 
displacement component (12) and the non-zero component of a (13) identically satisfy the 
boundary conditions (19). The torque-twist relationship for the partially embedded inclusion is, 
however, modified owing to the change in the limits of integration in (14) (m/2</?<7r). 
Therefore the torque-twist relationship for the partially embedded prolate spheroidal inclusion, 
which is assumed to represent the near surface shear vane problem, is given by 

2 312 2 16n-a;Gw[l-A ] A 

1 -d(l- A2) 

ULTIMATE TORQUE MOBILIZED BY A PROLATE VANE 

Deep vane problem 

An expression for the ultimate torque (T,) mobilized by a deep shear vane with an elliptical 
blade shape, located in a saturated cohesive soil medium can be obtained by assuming that the 
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undrained shear strength (c,) is fully mobilized along the entire boundary cy = cyo, i.e., 
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Figure 3. The oblate shear vane problem. (a) Shear vane located at a large depth, (b) Shear vane located at the ground 
surface 

Disc vane problem 

In the particular case when K + O(i.e., ao+ 0), the oblate spheroid degenerates to a flat disc 
vane of infinitesimal thickness. This particular category of vane has, admittedly, limited 
application in geotechnical engineering. The torque-twist relationship is given by 

(26) T=” 3 
3 boGw 

where bo is the radius of the circular flat disc. It may be easily verified that in the limit K + 1, (25 )  
yields the result derived earlier (see equation (18)) for the fully embedded spherical vane. 

Surface vane problem 

The torque-twist relationship for an oblate spheroidal inclusion partially embedded in 
bonded contact with an isotropic elastic halfspace (Figure 3(b)) can be directly recovered from 
(25) by invoking additional boundary conditions similar to those outlined earlier for the prolate 
vane problem. Therefore, for the partially embedded oblate vane we have 

8.?rb%Go(l - K ’ ) ~ ’ *  
T =  

K 

Similarly the torque-twist relationship for a circular disc bonded to the surface of a halfspace is 
given by 

(28) 

The result (28) is identical to that obtained by Reissner and SagociZ6 for exactly the same torsion 
problem. 

T=’6 3 
3 boG@ 
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ULTIMATE TORQUE MOBILIZED BY THE OBLATE VANE 

Again, expressions for the ultimate torque mobilized by an oblate vane can 
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CONCLUSIONS 

The shear vane tests are extensively used in the determination of the undrained shear strength 
characteristics of cohesive soils tested under both laboratory and field conditions. This paper 
examines the possible further use of a shear vane test as a technique for the determination of 
in -situ deformability characteristics of a soil medium. A generalized theoretical basis is 
provided whereby the linear elastic shear modulus of a cohesive soil medium can be estimated 
from an examination of the initial stages of a torque-twist relationship. The development of 
these analytical estimates assumes that the shear vane is composed of blades with an elliptical 
shape and that the material region enclosed within the swept boundary of the vane remains 
undeformed throughout the application of the torque. It has been shown that this latter 
assumption appears to be satisfactory for shear vane tests carried out on soil media which exhibit 
incompressible elastic characteristics. The soil disturbance associated wihth the vane penetra- 
tion is assumed to be small and thus neglected in the analytical treatment. Using these 
assumptions, exact closed form solutions are developed for the torque-twist relationships for 
elliptical shear vanes either fully embedded in an isotropic infinite elastic medium or partially 
embedded in an isotropic elastic halfspace. These analyses correspond respectively, to vane tests 
that are carried out at a large depth from a boundary or at the boundary itself. The torque-twist 
relationships thus developed can be directly employed to estimate the linear elastic shear 
modulus of the cohesive soil medium. Expressions have also been derived for the ultimate 
torque mobilized by these elliptical vanes; these in tus(these )53 -1.1601T2rouldelf. the estd
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